

LOYOLA COLLEGE (AUTONOMOUS), CHENNAI - 600 034

B.Sc. DEGREE EXAMINATION – **CHEMISTRY**SIXTH SEMESTER – **APRIL 2013**

CH 6607/CH 6601 - COORDINATION CHEMISTRY

Date: 27/04/2013	Dept. No.	Max.: 100 Marks
Time: 1:00 - 4:00	l	

PART-A

Answer ALL the questions:

 $(10\times2=20 \text{ marks})$

- 1. Represent schematically the d-orbital splitting in the case of a d⁶ system, considering both low and high spin octahedral complexes.
- 2. Mention the orbitals that are involved in the formation of four coordinated complexes. Write an example for each of those complexes.
- 3. How does the basicity of the inert ligand influence the dissociation Co-X bond (X-halide) in a hexacoordinate complex?
- 4. Why is the rate of aquation of $[Co(NH_3)_5Cl]^{2+}$ is much slower than that of $[Co(NH_3)_4Cl_2]^+$.
- 5. How does the oxidation process help in the synthesis of a metal complex?
- 6. How is tris-(thiourea) copper (I) sulphate prepared?
- 7. Write the IUPAC name and structure of Wilkinson's catalyst.
- 8. Mention any two significant roles played by the metal present in Wilkinson's catalyst in the catalytic reactions.
- 9. What happens when $[Mn_2(CO)_{10}]$ is reduced by hydrogen?
- 10. What do you understand by 'in vivo' and 'in vitro' nitrogen fixation?

PART - B

Answer any EIGHT questions:

(8×5=40 marks)

- 11. A certain manganese(III) octahedral complex has the following parameters:
 - Δ_0 = 21100 cm⁻¹ and E_p = 27700cm⁻¹ What is the spin state of the complex? Calculate also the c.f.s.e. and the spin only magnetic moment.
- 12. Discuss the consequences of Jahn-Teller distortion.
- 13. What are normal spinels and inverse spinels? Citing an example for each, account for their nature.
- 14. Outline the salient features of the hydrolysis of [Co(NH₃)₅Cl]²⁺.
- 15. Describe any three characteristic features of tunneling mechanism exhibited by metal complexes.
- 16. What are sigma and pi bonding and anti-bonding molecular orbitals? Give their corresponding group theoretical symbols.
- 17. Describe 'thermal decomposition' as a method of synthesis of a complex.
- 18. What are Schiff base complexes? Write a method of preparation of such a metal complex.

- 19. Explain 18- electron rule, considering two organometallic compounds as examples.
- 20. Describe briefly the preparation and characteristics of an alkylidene.
- 21. Write a note on contrast agents in MRI.
- 22. Highlight the structural and functional features of catalase.

PART-C

Answer any FOUR questions:

 $(4\times10=40 \text{ marks})$

- 23. Discuss the evidence for covalency of M-L bond in complexes.
- 24. (a) Describe d-orbital splitting in square planar metal complexes.
 - (b) Outline the characteristic of inner sphere mechanism.
- 25. Give an account of the mechanistic aspects of dissociative and associative types of square planar complexes.
- 26. Discuss the structure and bonding in ferrocene.
- 27. Describe the importance and mechanism of Ziegler-Natta catalysis.
- 28. Write notes on:
 - (a) Template synthesis and
 - (b) Carboxypeptidase A.

\$\$\$\$\$\$\$